
Simulink® Requirements™

Reference

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Requirements™ Reference
© COPYRIGHT 2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Functions — Alphabetical List
1

Block Reference
2

iii

Contents

Functions — Alphabetical List

1

rmi
Interact programmatically with Requirements Management Interface

Syntax
reqlinks = rmi('createEmpty')
reqlinks = rmi('get', model)
reqlinks = rmi('get', sig_builder, group_idx)
rmi('set', model, reqlinks)
rmi('set', sig_builder, reqlinks, group_idx)
rmi('cat', model, reqlinks)
cnt = rmi('count', object)
rmi('clearAll', object)
rmi('clearAll', object, 'deep')
rmi('clearAll', object, 'noprompt')
rmi('clearAll', object, 'deep', 'noprompt')

cmdStr = rmi('navCmd', object)
[cmdStr, titleStr] = rmi('navCmd', object)
object = rmi('guidlookup', model, guidStr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
guidStr = rmi('guidget', object)

rmi('report', model)
rmi('report', matlabFilePath)
rmi('report', dictionaryFile)
rmi('projectreport')

rmi setup
rmi register linktypename
rmi unregister linktypename
rmi linktypelist

number_problems = rmi('checkdoc')

1 Functions — Alphabetical List

1-2

number_problems = rmi('checkdoc', docName)
rmi('check', matlabFilePath)
rmi('check', dictionaryFile)

rmi('doorssync', model)

rmi('setDoorsLabelTemplate', template)
template = rmi('getDoorsLabelTemplate')
label = rmi('doorsLabel', moduleID, objectID)
totalModifiedLinks = rmi('updateDoorsLabels', model)

Description
reqlinks = rmi('createEmpty') creates an empty instance of the requirement links
data structure.

reqlinks = rmi('get', model) returns the requirement links data structure for
model.

reqlinks = rmi('get', sig_builder, group_idx) returns the requirement links
data structure for the Signal Builder group specified by the index group_idx.

rmi('set', model, reqlinks) sets reqlinks as the requirements links for model.

rmi('set', sig_builder, reqlinks, group_idx) sets reqlinks as the
requirements links for the signal group group_idx in the Signal Builder block
sig_builder.

rmi('cat', model, reqlinks) adds the requirements links in reqlinks to existing
requirements links for model.

cnt = rmi('count', object) returns the number of requirements links for object.

rmi('clearAll', object) deletes all requirements links for object.

rmi('clearAll', object, 'deep') deletes all requirements links in the model
containing object.

rmi('clearAll', object, 'noprompt') deletes all requirements links for object
and does not prompt for confirmation.

 rmi

1-3

rmi('clearAll', object, 'deep', 'noprompt') deletes all requirements links in
the model containing object and does not prompt for confirmation.

cmdStr = rmi('navCmd', object) returns the MATLAB® command cmdStr used to
navigate to object.

[cmdStr, titleStr] = rmi('navCmd', object) returns the MATLAB command
cmdStr and the title titleStr that provides descriptive text for object.

object = rmi('guidlookup', model, guidStr) returns the object name in model
that has the globally unique identifier guidStr.

rmi('highlightModel', object) highlights all of the objects in the parent model of
object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in the parent
model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered index in the
requirements document associated with object.

dialog = rmi('edit', object) displays the Requirements dialog box for object
and returns the handle of the dialog box.

guidStr = rmi('guidget', object) returns the globally unique identifier for
object. A globally unique identifier is created for object if it lacks one.

rmi('report', model) generates a Requirements Traceability report in HTML format
for model.

rmi('report', matlabFilePath) generates a Requirements Traceability report in
HTML format for the MATLAB code file specified by matlabFilePath.

rmi('report', dictionaryFile) generates a Requirements Traceability report in
HTML format for the Simulink® data dictionary specified by dictionaryFile.

rmi('projectreport') generates a Requirements Traceability report in HTML format
for the current Simulink Project. The master page of this report has HTTP links to
reports for each project item that has requirements traceability associations. For more
information, see “Create Requirements Traceability Report for Simulink Project”.

1 Functions — Alphabetical List

1-4

rmi setup configures RMI for use with your MATLAB software and installs the
interface for use with the IBM® Rational® DOORS® software.

rmi register linktypename registers the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi unregister linktypename removes the custom link type specified by the
function linktypename. For more information, see “Custom Link Type Registration”.

rmi linktypelist displays a list of the currently registered link types. The list
indicates whether each link type is built-in or custom, and provides the path to the
function used for its registration.

number_problems = rmi('checkdoc') checks validity of links to Simulink from a
requirements document in Microsoft® Word, Microsoft Excel®, or IBM Rational DOORS.
It prompts for the requirements document name, returns the total number of problems
detected, and opens an HTML report in the MATLAB Web browser. For more
information, see “Validate Requirements Links in a Requirements Document”.

number_problems = rmi('checkdoc', docName) checks validity of links to
Simulink from the requirements document specified by docName. It returns the total
number of problems detected and opens an HTML report in the MATLAB Web browser.
For more information, see “Validate Requirements Links in a Requirements Document”.

rmi('check', matlabFilePath) checks consistency of traceability links associated
with MATLAB code lines in the .m file matlabFilePath, and opens an HTML report in
the MATLAB Web browser.

rmi('check', dictionaryFile) checks consistency of traceability links associated
with the Simulink data dictionary dictionaryFile, and opens an HTML report in the
MATLAB Web browser.

rmi('doorssync', model) opens the DOORS synchronization settings dialog box,
where you can customize the synchronization settings and synchronize your model with
an open project in an IBM Rational DOORS database.

rmi('setDoorsLabelTemplate', template) specifies a new custom template for
labels of requirements links to IBM Rational DOORS. The default label template
contains the section number and object heading for the DOORS requirement link target.
To revert the link label template back to the default, enter
rmi('setDoorsLabelTemplate', '') at the MATLAB command prompt.

 rmi

1-5

template = rmi('getDoorsLabelTemplate') returns the currently specified custom
template for labels of requirements links to IBM Rational DOORS.

label = rmi('doorsLabel', moduleID, objectID) generates a label for the
requirements link to the IBM Rational DOORS object specified by objectID in the
DOORS module specified by moduleID, according to the current template.

totalModifiedLinks = rmi('updateDoorsLabels', model) updates all IBM
Rational DOORS requirements links labels in model according to the current template.

Examples

Requirements Links Management in Example Model

Get a requirement associated with a block in the slvnvdemo_fuelsys_htmreq model,
change its description, and save the requirement back to that block. Define a new
requirement link and add it to the existing requirements links in the block.

Get requirement link associated with the Airflow calculation block in the
slvnvdemo_fuelsys_htmreq example model.

slvnvdemo_fuelsys_htmreq;
blk_with_req = ['slvnvdemo_fuelsys_htmreq/fuel rate' 10 'controller/...
 Airflow calculation'];
reqts = rmi('get', blk_with_req);

Change the description of the requirement link.

reqts.description = 'Mass airflow estimation';

Save the changed requirement link description for the Airflow calculation block.

rmi('set', blk_with_req, reqts);

Create new requirement link to example document fuelsys_requirements2.htm.

new_req = rmi('createempty');
new_req.doc = 'fuelsys_requirements2.htm';
new_req.description = 'A new requirement';

1 Functions — Alphabetical List

1-6

Add new requirement link to existing requirements links for the Airflow calculation
block.

rmi('cat', blk_with_req, new_req);

Requirements Traceability Report for Example Model

Create HTML report of requirements traceability data in example model.

Create an HTML requirements report for the slvnvdemo_fuelsys_htmreq example
model.

rmi('report', 'slvnvdemo_fuelsys_htmreq');

The MATLAB Web browser opens, showing the report.

Labels for Requirements Links to IBM Rational DOORS

Specify a new label template for links to requirements in DOORS, and update labels of
all DOORS requirements links in your model to fit the new template.

Specify a new label template for requirements links to IBM Rational DOORS so that new
links to DOORS objects are labeled with the corresponding module ID, object absolute
number, and the value of the ‘Backup’ attribute.

rmi('setDoorsLabelTemplate', '%m:%n [backup=%<Backup>]');

Specify a new label template for requirements links to IBM Rational DOORS and set the
maximum label length to (for example) 200 characters.

rmi('setDoorsLabelTemplate', '%h %200');

Update existing DOORS requirements link labels to match the new specified template in
your model example_model. When updating labels, DOORS must be running and all
linked modules must be accessible for reading.

 rmi

1-7

rmi('updateDoorsLabels', example_model);

Input Arguments
model — Simulink or Stateflow® model with which requirements can be associated
name | handle

Simulink or Stateflow model with which requirements can be associated, specified as a
character vector or handle.
Example: 'slvnvdemo_officereq'
Data Types: char

object — Model object with which requirements can be associated
name | handle

Model object with which requirements can be associated, specified as a character vector
or handle.
Example: 'slvnvdemo_fuelsys_htmreq/fuel rate controller/Airflow
calculation'
Data Types: char

sig_builder — Signal Builder block containing signal group with requirements traceability
associations
name | handle

Signal Builder block containing signal group with requirements traceability associations,
specified as a character vector or handle.
Data Types: char

group_idx — Signal Builder group index
integer

Signal Builder group index, specified as a scalar.
Example: 2
Data Types: char

1 Functions — Alphabetical List

1-8

matlabFilePath — MATLAB code file with requirements traceability associations
path

MATLAB code file with requirements traceability associations, specified as the path to
the file.
Example:
Data Types: char

dictionaryFile — Simulink data dictionary with requirements traceability associations
character vector

Simulink data dictionary with requirements traceability associations, specified as a
character vector containing the file name and, optionally, path of the dictionary.
Example:
Data Types: char

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, specified as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167
Data Types: char

index — Index number of requirement linked to model object
integer

Index number of requirement linked to model object, specified as an integer.

docName — Requirements document in external application
file name | path

Requirements document in external application, specified as a character vector that
represents one of the following:

• IBM Rational DOORS module ID.
• path to Microsoft Word requirements document.
• path to Microsoft Excel requirements document.

 rmi

1-9

For more information, see “Validate Requirements Links in a Requirements Document”.

label — Label for links to requirements in IBM Rational DOORS
character vector
Example:
Data Types: char

template — Template label for links to requirements in IBM Rational DOORS
character vector

Template label for links to requirements in IBM Rational DOORS, specified as a
character vector.

You can use the following format specifiers to include the associated DOORS information
in your requirements links labels:
%h Object heading
%t Object text
%p Module prefix
%n Object absolute number
%m Module ID
%P Project name
%M Module name
%U DOORS URL
%<ATTRIBUTE_NAME> Other DOORS attribute you specify

Example: '%m:%n [backup=%<Backup>]'
Data Types: char

moduleID — IBM Rational DOORS module
DOORS module ID

IBM Rational DOORS module, specified as the unique DOORS module ID.
Example:
Data Types: char

1 Functions — Alphabetical List

1-10

objectID — IBM Rational DOORS object
DOORS object ID

IBM Rational DOORS object in the DOORS module moduleID, specified as the locally
unique DOORS ID.
Example:
Data Types: char

Output Arguments
reqlinks — Requirement links data
struct

Requirement links data, returned as a structure array with the following fields:
doc Character vector identifying requirements document
id Character vector defining location in requirements document. The

first character specifies the identifier type:

First
Character

Identifier Example

? Search text, the first
occurrence of which is
located in requirements
document

'?Requirement 1'

@ Named item, such as
bookmark in a Microsoft
Word file or an anchor in
an HTML file

'@my_req'

Page or item number '#21'
> Line number '>3156'
$ Worksheet range in a

spreadsheet
'$A2:C5'

 rmi

1-11

linked Boolean value specifying whether the requirement link is accessible
for report generation and highlighting:
1 (default). Highlight model object and include requirement link in
reports.
0

description Character vector describing the requirement
keywords Optional character vector supplementing description
reqsys Character vector identifying the link type registration name;

'other' for built-in link types

cmdStr — Command used to navigate to model object
character vector

Command used to navigate to model object object, returned as a character vector.
Example: rmiobjnavigate('slvnvdemo_fuelsys_officereq.slx',
'GIDa_59e165f5_19fe_41f7_abc1_39c010e46167');

titleStr — Textual description of model object with requirements links
character vector

Textual description of model object with requirements links, returned as a character
vector.
Example: slvnvdemo_fuelsys_officereq/.../Airflow calculation/Pumping
Constant (Lookup2D)

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, returned as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

dialog — Requirements dialog box for model object
handle

Requirements dialog box for model object object, returned as a handle to the dialog box.

number_problems — Total count of invalid links detected in external document
integer

1 Functions — Alphabetical List

1-12

Total count of invalid links detected in external document docName.

For more information, see “Validate Requirements Links in a Requirements Document”.

totalModifiedLinks — Total count of DOORS requirements links updated with new label
template
integer

Total count of DOORS requirements links updated with new label template.

See Also
rmipref | rmiobjnavigate | rmidocrename | rmitag | rmimap.map |
RptgenRMI.doorsAttribs

Topics
“Requirements Management Interface Setup”
“Maintenance of Requirements Links”

Introduced in R2006b

 rmi

1-13

rmidata.export
Move requirements traceability data to external .req file

Syntax
[total_linked,total_links] = rmidata.export
[total_linked,total_links] = rmidata.export(model)

Description
[total_linked,total_links] = rmidata.export moves requirements traceability
data associated with the current Simulink model to an external file named
model_name.req. rmidata.export saves the file in the same folder as the model.
rmidata.export deletes the requirements traceability data stored in the model and
saves the modified model.

[total_linked,total_links] = rmidata.export(model) moves requirements
traceability data associated with model to an external file named model_name.req.
rmidata.export saves the file in the same folder as model. rmidata.export deletes
the requirements traceability data stored in the model and saves the modified model.

Input Arguments
model

Name or handle of a Simulink model

Output Arguments
total_linked

Integer indicating the number of objects in the model that have linked requirements

1 Functions — Alphabetical List

1-14

total_links

Integer indicating the total number of requirements links in the model

Examples
Move the requirements traceability data from the slvnvdemo_fuelsys_officereq
model to an external file:

rmidata.export('slvnvdemo_fuelsys_officereq');

See Also
rmi | rmidata.save | rmimap.map

Topics
“Specify Storage for Requirements Links”
“Requirements Link Storage”

Introduced in R2011b

 rmidata.export

1-15

rmimap.map
Associate externally stored requirements traceability data with model

Syntax
rmimap.map(model,reqts_file)
rmimap.map(model,'undo')
rmimap.map(model,'clear')

Description
rmimap.map(model,reqts_file) associates the requirements traceability data from
reqts_file with the Simulink model model.

rmimap.map(model,'undo') removes from the .req file associated with model the
requirements traceability data that was most recently saved in the .req file.

rmimap.map(model,'clear') removes from the .req file associated with model all
requirements traceability data.

Input Arguments
model

Name, handle, or full path for a Simulink model

reqts_file

Full path to the .req file that contains requirements traceability data for the model

Alternatives
To load a file that contains requirements traceability data for a model:

1 Functions — Alphabetical List

1-16

1 Open the model.
2 Select Analysis > Requirements > Load Links.

Note The Load Links menu item appears only when your model is configured to
store requirements data externally. To specify external storage of requirements data
for your model, in the Requirements Settings dialog box under Storage > Default
storage location for requirements links data, select Store externally (in a
separate *.req file).

3 Browse to the .req file that contains the requirements links.
4 Click OK.

Examples
Associate an external requirements traceability data file with a Simulink model. After
associating the information with the model, view the objects with linked requirements by
highlighting the model.

open_system('slvnvdemo_powerwindowController');
reqFile = fullfile(matlabroot, 'toolbox', 'slvnv', ...
 'rmidemos', 'powerwin_reqs', ...
 'slvnvdemo_powerwindowRequirements.req');
rmimap.map('slvnvdemo_powerwindowController', reqFile);
rmi('highlightModel', 'slvnvdemo_powerwindowController');

To clear the requirements you just associated with that model, run this rmimap.map
command:

rmimap.map('slvnvdemo_powerwindowController','clear');

See Also
rmi | rmidata.save | rmidata.export

Topics
“Specify Storage for Requirements Links”
“Requirements Link Storage”

 rmimap.map

1-17

Introduced in R2015a

1 Functions — Alphabetical List

1-18

rmidata.save
Save requirements traceability data in external .req file

Syntax
rmidata.save(model)

Description
rmidata.save(model) saves requirements traceability data for a model in an
external .req file. The model must be configured to store requirements traceability data
externally. This function is equivalent to Analysis > Requirements > Save Links in
the Simulink Editor.

Examples

Create New Requirement Link and Save Externally

Add a requirement link to an existing example model, and save the model requirements
traceability data in an external file.

Open the example model, slvnvdemo_powerwindowController.

open_system('slvnvdemo_powerwindowController');

Specify that the model store requirements data externally.

rmipref('StoreDataExternally',1);

Create a new requirements link structure.

newReqLink = rmi('createEmpty');
newReqLink.description = 'newReqLink';

 rmidata.save

1-19

Specify the requirements document that you want to link to from the model. In this case,
an example requirements document is provided.

newReqLink.doc = [matlabroot '\toolbox\slvnv\rmidemos\' ...
 'powerwin_reqs\PowerWindowSpecification.docx'];

Specify the text of the requirement within the document to which you want to link.

newReqLink.id = '?passenger input consists of a vector' ...
 'with three elements';

Specify that the new requirements link that you created be attached to the Mux4 block of
the slvnvdemo_powerwindowController example model.

rmi('set', 'slvnvdemo_powerwindowController/Mux4', newReqLink);

Save the new requirement link that you just created in an external .req file associated
with the model.

rmidata.save('slvnvdemo_powerwindowController');

This function is equivalent to the Simulink Editor option Analysis > Requirements >
Save Links.

To highlight the Mux4 block, turn on requirements highlighting for the
slvnvdemo_powerwindowController example model.

rmi('highlightModel', 'slvnvdemo_powerwindowController');

You can test your requirements link by right-clicking the Mux4 block. In the context
menu, select Requirements > 1. “newReqLink”.

Close the example model.

close_system('slvnvdemo_powerwindowController', 0);

You are not prompted to save unsaved changes because you saved the requirements link
data outside the model file. The model file remains unchanged.

Input Arguments
model — Name or handle of model with requirements links
character vector | handle

1 Functions — Alphabetical List

1-20

Name of model with requirements links, specified as a character vector, or handle to
model with requirements links. The model must be loaded into memory and configured to
store requirements traceability data externally.

If you have a new model with no existing requirements links, configure it for external
storage as described in “Specify Storage for Requirements Links”. You can also use the
rmipref command to specify storage settings.

If you have an existing model with internally stored requirements traceability data,
convert that data to external storage as described in “Move Internally Stored
Requirements Links to External Storage”. You can also use the rmidata.export
command to convert existing requirements traceability data to external storage.
Example: 'slvnvdemo_powerwindowController'
Example: get_param(gcs,'Handle')

See Also
rmimap.map | rmidata.export

Topics
“Requirements Link Storage”

Introduced in R2013b

 rmidata.save

1-21

rmidocrename
Update model requirements document paths and file names

Syntax
rmidocrename(model_handle, old_path, new_path)
rmidocrename(model_name, old_path, new_path)

Description
rmidocrename(model_handle, old_path, new_path) collectively updates the links
from a Simulink model to requirements files whose names or locations have changed.
model_handle is a handle to the model that contains links to the files that you have
moved or renamed. old_path is a character vector that contains the existing full or
partial file or path name. new_path is a character vector with the new full or partial file
or path name.

rmidocrename(model_name, old_path, new_path) updates the links to
requirements files associated with model_name. You can pass rmidocrename a model
handle or a model file name.

When using the rmidocrename function, make sure to enter specific character vectors
for the old document name fragments so that you do not inadvertently modify other
links.

Examples
For the current Simulink model, update all links to requirements files that contain the
character vector 'project_0220', replacing them with 'project_0221':
rmidocrename(gcs, 'project_0220', 'project_0221')
Processed 6 objects with requirements, 5 out of 13 links were modified.

1 Functions — Alphabetical List

1-22

Alternatives
To update the requirements links one at a time, for each model object that has a link:

1 For each object with requirements, open the Requirements Traceability Link Editor
by right-clicking and selecting Requirements Traceability > Open Link Editor.

2 Edit the Document field for each requirement that points to a moved or renamed
document.

3 Click Apply to save the changes.

See Also
rmi

Introduced in R2009b

 rmidocrename

1-23

rmiobjnavigate
Navigate to model objects using unique Requirements Management Interface identifiers

Syntax
rmiobjnavigate(modelPath, guId)
rmiobjnavigate(modelPath, guId, grpNum)

Description
rmiobjnavigate(modelPath, guId) navigates to and highlights the specified object
in a Simulink model.

rmiobjnavigate(modelPath, guId, grpNum) navigates to the signal group number
grpNum of a Signal Builder block identified by guId in the model modelPath.

Input Arguments
modelPath

A full path to a Simulink model file, or a Simulink model file name that can be resolved
on the MATLAB path.

guId

A unique identifier that the RMI uses to identify a Simulink or Stateflow object.

grpNum

Integer indicating a signal group number in a Signal Builder block

1 Functions — Alphabetical List

1-24

Examples
Open the slvnvdemo_fuelsys_officereq example model and get the unique
identifier for the MAP Sensor block:
% Open example model
slvnvdemo_fuelsys_officereq;
% Get the Simulink Identifier of the MAP Sensor Block
targetSID = Simulink.ID.getSID('slvnvdemo_fuelsys_officereq/MAP sensor');

Navigate to the MAP Sensor block using rmiobjnavigate and the unique identifier
returned in the previous step:
% Split targetSID into two components
[targetModel, targetObj] = strtok(targetSID,':');
% Navigate to the MAP sensor using the model name and model guID
rmiobjnavigate(targetModel, targetObj)

See Also
rmi

Topics
“Use the rmiobjnavigate Function”

Introduced in R2010b

 rmiobjnavigate

1-25

rmipref
Get or set RMI preferences stored in prefdir

Syntax
rmipref

currentVal = rmipref(prefName)

previousVal = rmipref(Name,Value)

Description
rmipref returns list of Name,Value pairs corresponding to Requirements Management
Interface (RMI) preference names and accepted values for each preference.

currentVal = rmipref(prefName) returns the current value of the preference
specified by prefName.

previousVal = rmipref(Name,Value) sets a new value for the RMI preference
specified by Name, and returns the previous value of that RMI preference.

Examples

References to Simulink Model in External Requirements Documents

Choose the type of reference that the RMI uses when it creates links to your model from
external requirements documents. The reference to your model can be either the model
file name or the full absolute path to the model file.

The value of the 'ModelPathReference' preference determines how the RMI stores
references to your model in external requirements documents. To view the current value
of this preference, enter the following code at the MATLAB command prompt.

1 Functions — Alphabetical List

1-26

currentVal = rmipref('ModelPathReference')

The default value of the 'ModelPathReference' preference is 'none'.

currentVal =

none

This default value specifies that the RMI uses only the model file name in references to
your model that it creates in external requirements documents.

Automatic Application of User Tags to Selection-Based Requirements Links

Configure the RMI to automatically apply a specified list of user tag keywords to new
selection-based requirements links that you create.

Specify that the user tags design and reqts apply to new selection-based requirements
links that you create.

previousVal = rmipref('SelectionLinkTag','design,reqts')

When you specify a new value for an RMI preference, rmipref returns the previous
value of that RMI preference. In this case, previousVal is an empty character vector,
the default value of the 'SelectionLinkTag' preference.

previousVal =

 ''

View the currently specified value for the 'SelectionLinkTag' preference.

currentVal = rmipref('SelectionLinkTag')

The function returns the currently specified comma-separated list of user tags.

currentVal =

design,reqts

These user tags apply to all new selection-based requirements links that you create.

 rmipref

1-27

Internal Storage of Requirements Traceability Data

Configure the RMI to embed requirements links data in the model file instead of in a
separate .req file.

Note If you have existing requirements links for your model that are stored internally,
you need to move these links into an external .req file before you change the storage
settings for your requirements traceability data. See “Move Internally Stored
Requirements Links to External Storage” for more information.

If you would like to embed requirements traceability data in the model file, set the
'StoreDataExternally' preference to 0.

previousVal = rmipref('StoreDataExternally',0)

When you specify a new value for an RMI preference, rmipref returns the previous
value of that RMI preference. By default, the RMI stores requirements links data
externally in a separate .req file, so the previous value of this preference was 1.

previousVal =

 1

After you set the 'StoreDataExternally' preference to 0, your requirements links are
embedded in the model file.

currentVal = rmipref('StoreDataExternally')

currentVal =

 0

Input Arguments
prefName — RMI preference name
'BiDirectionalLinking' | 'FilterRequireTags' | 'CustomSettings' | ...

RMI preference name, specified as the corresponding Name character vector listed in
“Name-Value Pair Arguments” on page 1-29.

1 Functions — Alphabetical List

1-28

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' ').
Example: 'BiDirectionalLinking',true enables bidirectional linking for your
model, so that when you create a selection-based link to a requirements document, the
RMI creates a corresponding link to your model from the requirements document.

BiDirectionalLinking — Bidirectional selection linking preference
false (default) | true

Bidirectional selection linking preference, specified as a logical value.

This preference specifies whether to simultaneously create return link from target to
source when creating link from source to target. This setting applies only for
requirements document types that support selection-based linking.
Data Types: logical

DocumentPathReference — Preference for path format of links to requirements
documents from model
'modelRelative' (default) | 'absolute' | 'pwdRelative' | 'none'

Preference for path format of links to requirements documents from model, specified as
one of the following values.
Value Document reference contains...
'absolute' full absolute path to requirements

document.
'pwdRelative' path relative to MATLAB current folder.
'modelRelative' path relative to model file.
'none' document file name only.

For more information, see “Document Path Storage”.
Data Types: char

ModelPathReference — Preference for path format in links to model from requirements
documents
'none' (default) | 'absolute'

 rmipref

1-29

Preference for path format in links to model from requirements documents, specified as
one of the following values.
Value Model reference contains...
'absolute' full absolute path to model.
'none' model file name only.

Data Types: char

LinkIconFilePath — Preference to use custom image file as requirements link icon
empty character vector (default) | full image file path

Preference to use custom image file as requirements link icon, specified as full path to
icon or small image file. This image will be used for requirements links inserted in
external documents.
Data Types: char

FilterEnable — Preference to enable filtering by user tag keywords
false (default) | true

Preference to enable filtering by user tag keywords, specified as a logical value. When
you filter by user tag keywords, you can include or exclude subsets of requirements links
in highlighting or reports. You can specify user tag keywords for requirements links
filtering in the 'FilterRequireTags' and 'FilterExcludeTags' preferences. For
more information about requirements filtering, see “Filter Requirements with User
Tags”.
Data Types: logical

FilterRequireTags — Preference for user tag keywords for requirements links
empty character vector (default) | comma-separated list of user tag keywords

Preference for user tag keywords for requirements links, specified as a comma-separated
list of words or phrases in a character vector. These user tags apply to all new
requirements links you create. Requirements links with these user tags are included in
model highlighting and reports. For more information about requirements filtering, see
“Filter Requirements with User Tags”.
Data Types: char

1 Functions — Alphabetical List

1-30

FilterExcludeTags — Preference to exclude certain requirements links from model
highlighting and reports
empty character vector (default) | comma-separated list of user tag keywords

Preference to exclude certain requirements links from model highlighting and reports,
specified as a comma-separated list of user tag keywords. Requirements links with these
user tags are excluded from model highlighting and reports. For more information about
requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

FilterMenusByTags — Preference to disable labels of requirements links with designated
user tags
false (default) | true

Preference to disable labels of requirements links with designated user tags, specified as
a logical value. When set to true, if a requirement link has a user tag designated in
'FilterExcludeTags' or 'FilterRequireTags', that requirements link will be
disabled in the Requirements context menu. For more information about requirements
filtering, see “Filter Requirements with User Tags”.
Data Types: logical

FilterConsistencyChecking — Preference to filter Model Advisor requirements
consistency checks with designated user tags
false (default) | true

Preference to filter Model Advisor requirements consistency checks with designated user
tags, specified as a logical value. When set to true, Model Advisor requirements
consistency checks include requirements links with user tags designated in
'FilterRequireTags' and excludes requirements links with user tags designated in
'FilterExcludeTags'. For more information about requirements filtering, see “Filter
Requirements with User Tags”.
Data Types: logical

KeepSurrogateLinks — Preference to keep DOORS surrogate links when deleting all
requirements links
empty (default) | false | true

Preference to keep DOORS surrogate links when deleting all requirements links,
specified as a logical value. When set to true, selecting Requirements > Delete All

 rmipref

1-31

Links deletes all requirements links including DOORS surrogate module requirements
links. When not set to true or false, selecting Requirements > Delete All Links
opens a dialog box with a choice to keep or delete DOORS surrogate links.
Data Types: logical

ReportFollowLibraryLinks — Preference to include requirements links in referenced
libraries in generated report
false (default) | true

Preference to include requirements links in referenced libraries in generated report,
specified as a logical value. When set to true, generated requirements reports include
requirements links in referenced libraries.
Data Types: logical

ReportHighlightSnapshots — Preference to include highlighting in model snapshots in
generated report
true (default) | false

Preference to include highlighting in model snapshots in generated report, specified as a
logical value. When set to true, snapshots of model objects in generated requirements
reports include highlighting of model objects with requirements links.
Data Types: logical

ReportNoLinkItems — Preference to include model objects with no requirements links in
generated requirements reports
false (default) | true

Preference to include model objects with no requirements links in generated
requirements reports, specified as a logical value. When set to true, generated
requirements reports include lists of model objects that have no requirements links.
Data Types: logical

ReportUseDocIndex — Preference to include short document ID instead of full path to
document in generated requirements reports
false (default) | true

Preference to include short document ID instead of full path to document in generated
requirements reports, specified as a logical value. When set to true, generated

1 Functions — Alphabetical List

1-32

requirements reports include short document IDs, when specified, instead of full paths to
requirements documents.
Data Types: logical

ReportIncludeTags — Preference to list user tags for requirements links in generated
reports
false (default) | true

Preference to list user tags for requirements links in generated reports, specified as a
logical value. When set to true, generated requirements reports include user tags
specified for each requirement link. For more information about requirements filtering,
see “Filter Requirements with User Tags”.
Data Types: logical

ReportDocDetails — Preference to include extra detail from requirements documents in
generated reports
false (default) | true

Preference to include extra detail from requirements documents in generated reports,
specified as a logical value. When set to true, generated requirements reports load
linked requirements documents to include additional information about linked
requirements. This preference applies to Microsoft Word, Microsoft Excel, and IBM
Rational DOORS requirements documents only.
Data Types: logical

ReportLinkToObjects — Preference to include links to model objects in generated
requirements reports
false (default) | true

Preference to include links to model objects in generated requirements reports, specified
as a logical value. When set to true, generated requirements reports include links to
model objects. These links work only if the MATLAB internal HTTP server is active.
Data Types: logical

SelectionLinkWord — Preference to include Microsoft Word selection link option in
Requirements context menu
true (default) | false

 rmipref

1-33

Preference to include Microsoft Word selection link option in Requirements context
menu, specified as a logical value.
Data Types: logical

SelectionLinkExcel — Preference to include Microsoft Excel selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Excel selection link option in Requirements context
menu, specified as a logical value.
Data Types: logical

SelectionLinkDoors — Preference to include IBM Rational DOORS selection link option
in Requirements context menu
true (default) | false

Preference to include IBM Rational DOORS selection link option in Requirements
context menu, specified as a logical value.
Data Types: logical

SelectionLinkTag — Preference for user tags to apply to new selection-based
requirements links
empty character vector (default) | comma-separated list of user tag keywords

Preference for user tags to apply to new selection-based requirements links, specified as
a comma-separated list of words or phrases in a character vector. These user tags
automatically apply to new selection-based requirements links that you create. For more
information about requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

StoreDataExternally — Preference to store requirements links data in external .req file
false (default) | true

Preference to store requirements links data in external .req file, specified as a logical
value. This setting applies to all new models and to existing models that do not yet have
requirements links. For more information about storage of requirements links data, see
“Requirements Link Storage” and “Specify Storage for Requirements Links”.
Data Types: logical

1 Functions — Alphabetical List

1-34

UseActiveXButtons — Preference to use legacy ActiveX® buttons in Microsoft Office
requirements documents
false (default) | true

Preference to use legacy ActiveX buttons in Microsoft Office requirements documents,
specified as a logical value. The default value of this preference is false; requirements
links are URL-based by default. ActiveX requirements navigation is supported for
backward compatibility. For more information on legacy ActiveX navigation, see
“Navigate with Objects Created Using ActiveX in Microsoft Office 2007 and 2010”.
Data Types: logical

CustomSettings — Preference for storing custom settings
inUse: 0 (default) | structure array of custom field names and settings

Preference for storing custom settings, specified as a structure array. Each field of the
structure array corresponds to the name of your custom preference, and each associated
value corresponds to the value of that custom preference.
Data Types: struct

Output Arguments
currentVal — Current value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Current value of the RMI preference specified by prefName. RMI preference names and
their associated possible values are listed in “Name-Value Pair Arguments” on page 1-29.

previousVal — Previous value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Previous value of the RMI preference specified by prefName. RMI preference names and
their associated possible values are listed in “Name-Value Pair Arguments” on page 1-29.

See Also
rmi

 rmipref

1-35

Topics
“Requirements Settings”

Introduced in R2013a

1 Functions — Alphabetical List

1-36

rmiref.insertRefs
Insert links to models into requirements documents

Syntax
[total_links, total_matches, total_inserted] = rmiref.insertRefs(
model_name, doc_type)

Description
[total_links, total_matches, total_inserted] = rmiref.insertRefs(
model_name, doc_type) inserts ActiveX controls into the open, active requirements
document of type doc_type. These controls correspond to links from model_name to the
document. With these controls, you can navigate from the requirements document to the
model.

Input Arguments
model_name

Name or handle of a Simulink model

doc_type

A character vector that indicates the requirements document type:

• 'word'
• 'excel'

Examples
Remove the links in an example requirements document, and then reinsert them:

 rmiref.insertRefs

1-37

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the example requirements document:

open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/',...
 'slvnvdemo_FuelSys_DesignDescription.docx')])

3 Remove the links from the requirements document:

rmiref.removeRefs('word')
4 Enter y to confirm the removal.
5 Reinsert the links from the requirements document to the model:

[total_links, total_matches, total_inserted] = ...
 rmiref.insertRefs(gcs, 'word')

See Also
rmiref.removeRefs

Introduced in R2011a

1 Functions — Alphabetical List

1-38

matlab:slvnvdemo_fuelsys_officereq

rmiref.removeRefs
Remove links to models from requirements documents

Syntax
rmiref.removeRefs(doc_type)

Description
rmiref.removeRefs(doc_type) removes all links to models from the open, active
requirements document of type doc_type.

Input Arguments
doc_type

A character vector that indicates the requirements document type:

• 'word'
• 'excel'
• 'doors'

Examples
Remove the links in this example requirements document:
open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/', ...
 'slvnvdemo_FuelSys_DesignDescription.docx')])
rmiref.removeRefs('word')

See Also
rmiref.insertRefs

 rmiref.removeRefs

1-39

Introduced in R2011a

1 Functions — Alphabetical List

1-40

rmitag
Manage user tags for requirements links

Syntax
rmitag(model, 'list')
rmitag(model, 'add', tag)
rmitag(model, 'add', tag, doc_pattern)
rmitag(model, 'delete', tag)
rmitag(model, 'delete', tag, doc_pattern)
rmitag(model, 'replace', tag, new_tag)
rmitag(model, 'replace', tag, new_tag, doc_pattern)
rmitag(model, 'clear', tag)
rmitag(model, 'clear', tag, doc_pattern)

Description
rmitag(model, 'list') lists all user tags in model.

rmitag(model, 'add', tag) adds tag as a user tag for all requirements links in
model.

rmitag(model, 'add', tag, doc_pattern) adds tag as a user tag for all links in
model, where the full or partial document name matches the regular expression
doc_pattern.

rmitag(model, 'delete', tag) removes the user tag, tag from all requirements
links in model.

rmitag(model, 'delete', tag, doc_pattern) removes the user tag, tag, from all
requirements links in model, where the full or partial document name matches
doc_pattern.

rmitag(model, 'replace', tag, new_tag) replaces tag with new_tag for all
requirements links in model.

 rmitag

1-41

rmitag(model, 'replace', tag, new_tag, doc_pattern) replaces tag with
new_tag for links in model, where the full or partial document name matches the
regular expression doc_pattern.

rmitag(model, 'clear', tag) deletes all requirements links that have the user tag,
tag.

rmitag(model, 'clear', tag, doc_pattern) deletes all requirements links that
have the user tag, tag, and link to the full or partial document name specified in
doc_pattern.

Input Arguments
model

Name of or handle to Simulink or Stateflow model with which requirements are
associated.

tag

Character vector specifying user tag for requirements links.

doc_pattern

Regular expression to match in the linked requirements document name. Not case
sensitive.

new_tag

Character vector that indicates the name of a user tag for a requirements link. Use this
argument when replacing an existing user tag with a new user tag.

Examples
Open the slvnvdemo_fuelsys_officereq example model, and add the user tag
tmptag to all objects with requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'add', 'tmptag');

1 Functions — Alphabetical List

1-42

Remove the user tag test from all requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'delete', 'test');

Delete all requirements links that have the user tag design:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'clear', 'design');

Change all instances of the user tag tmptag to safety requirement, where the
document filename extension is .docx:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'replace', 'tmptag', ...
 'safety requirements', '\.docx');

See Also
rmi | rmidocrename

Topics
“User Tags and Requirements Filtering”

Introduced in R2010a

 rmitag

1-43

RptgenRMI.doorsAttribs
IBM Rational DOORS attributes in requirements report

Syntax
RptgenRMI.doorsAttribs (action,attribute)

Description
RptgenRMI.doorsAttribs (action,attribute) specifies which DOORS object
attributes to include in the generated requirements report.

Input Arguments
action

Character vector that specifies the desired action for what content to include from a
DOORS record in the generated requirements report. Valid values for this argument are
as follows.
Value Description
'default' Restore the default settings for the DOORS system attributes

to include in the report.

The default configuration includes the Object Heading and
Object Text attributes, and all other attributes, except:

• Created Thru
• System attributes with empty string values
• System attributes that are false

'show' Display the current settings for the DOORS attributes to
include in the report.

1 Functions — Alphabetical List

1-44

Value Description
'type' Include or omit groups of DOORS attributes from the report.

If you specify 'type' for the first argument, valid values for
the second argument are:

• 'all' — Include all DOORS attributes in the report.
• 'user' — Include only user-defined DOORS in the

report.
• 'none' — Omit all DOORS attributes from the report.

'remove' Omit specified DOORS attributes from the report.
'all' Include specified DOORS attributes in the report, even if

that attribute is currently excluded as part of a group.
'nonempty' Enable or disable the empty attribute filter:

• Enter RptgenRMI.doorsAttribs('nonempty',
'off') to omit all empty attributes from the report.

• Enter RptgenRMI.doorsAttribs('nonempty', 'on')
to include empty user-defined attributes. The report never
includes empty system attributes.

Default:

attribute

Character vector that qualifies the action argument.

Output Arguments
result

• True if RptgenRMI.doorsAttribs modifies the current settings.
• For RptgenRMI.doorsAttribs('show'), this argument is a cell array of character

vectors that indicate which DOORS attributes to include in the requirements report,
for example:
>> RptgenRMI.doorsAttribs('show')

 RptgenRMI.doorsAttribs

1-45

ans =

 'Object Heading'
 'Object Text'
 '$AllAttributes$'
 '$NonEmpty$'
 '-Created Thru'

• The Object Heading and Object Text attributes are included by default.
• '$AllAttributes$' specifies to include all attributes associated with each

DOORS object.
• '$Nonempty$' specifies to exclude all empty attributes.
• '-Created Thru' specifies to exclude the Created Thru attribute for each

DOORS object.

Examples
Limit the DOORS attributes in the requirements report to user-defined attributes:

RptgenRMI.doorsAttribs('type', 'user');

Omit the content of the Last Modified By attribute from the requirements report:

RptgenRMI.doorsAttribs('remove', 'Last Modified By');

Include the content of the Last Modified On attribute in the requirements report, even
if system attributes are not included as a group:

RptgenRMI.doorsAttribs('add', 'Last Modified On');

Include empty system attributes in the requirements report:

RptgenRMI.doorsAttribs('nonempty', 'off');

Omit the Object Heading attribute from the requirements report. Use this option when
the link label is always the same as the Object Heading for the target DOORS object
and you do not want duplicate information in the requirements report:

RptgenRMI.doorsAttribs('remove', 'Object Heading');

1 Functions — Alphabetical List

1-46

See Also
rmi

Introduced in R2011b

 RptgenRMI.doorsAttribs

1-47

slwebview_req
Export Simulink system to Web views with requirements

Syntax
filename = slwebview_req(sysname)
filename = slwebview_req(sysname,Name,Value)

Description
filename = slwebview_req(sysname) exports the system sysname and its children
to a web page filename with contextual requirements information for the system
displayed on a separate panel of the layered model structure Web view.

filename = slwebview_req(sysname,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Note You can use slwebview_req only if you have also installed Simulink Report
Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file
filename

1 Functions — Alphabetical List

1-48

filename = slwebview_req(gcs, 'LookUnderMasks', 'all',
'FollowLinks', 'on')

Input Arguments
sysname — The system to export to a Web view file
character vector containing the path to the system | handle to a subsystem or block
diagram | handle to a chart or subchart

Exports the specified system or subsystem and its child systems to a Web view file, with
contextual requirements information for the system displayed on a separate panel of the
layered model structure Web view. By default, child systems of the sysname system are
also exported. Use the SearchScope name-value pair to export other systems, in
relation to sysname.
Example: ‘sysname’

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:

SearchScope — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by
sysname and all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by
sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by
the sysname and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the
system or chart specified by sysname.

 slwebview_req

1-49

Data Types: char

LookUnderMasks — Specifies whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in
the exported systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

FollowLinks — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.
Data Types: char

FollowModelReference — Specifies whether to access referenced models in a Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.
Data Types: char

ViewFile — Specifies whether to display the Web view in a Web browser when you export
the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.
Data Types: char

ShowProgressBar — Specifies whether to display the status bar when you export a Web
view
'on' (default) | 'off'

1 Functions — Alphabetical List

1-50

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.
Data Types: char

Output Arguments
filename — The name of the HTML file for displaying the Web view
character vector

Reports the name of the HTML file for displaying the Web view. Exporting a Web view
creates the supporting files, in a folder.

Tips
A Web view is an interactive rendition of a model that you can view in a Web browser.
You can navigate a Web view hierarchically to examine specific subsystems and to see
properties of blocks and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_cov

Introduced in R2015a

 slwebview_req

1-51

Block Reference

2

System Requirements
List system requirements in Simulink models

Library
Simulink Verification and Validation

Description
The System Requirements block lists the system-level requirements associated with a
model or subsystem. This block is dynamically populated. It displays system
requirements associated with the level of hierarchy in which the block appears in the
model. It does not list requirements associated with individual blocks in the model. To
ensure that all requirement links are listed in the System Requirements block:

1 Right-click the background of your model.
2 Select Requirements Traceability at This Level.
3 From the top of the context menu, verify that all the requirements you want to list

appear in the System Requirements block.

You can place this block anywhere in your model. It does not connect to other Simulink
blocks. You can have only one System Requirements block in a given subsystem.

When you insert this block into your Simulink model, it is populated with the system
requirements, as shown in the Airflow Calculation subsystem of the
slvnvdemo_fuelsys_officereq example.

2 Block Reference

2-2

Each of the listed requirements is an active link to the requirements document. When
you double-click a requirement label, the associated requirements document opens in its
editor window, scrolled to the target location.

Parameters
Block Title

The title of the system requirements list in the model. The default title is System
Requirements. You can enter a customized title, for example, Engine
Requirements.

Introduced before R2006a

 System Requirements

2-3

